

Жидкости для гидроразрыва пласта

Hydraulic Fracturing Fluids

By John Ely, Ely & Associates, Inc

С самого момента появления процесса гидравлического разрыва пласта (ГРП) в 1947 году великое множество разных и порой странных видов жидкостей применялось для создания гидравлических трещин и переноса и взвеси расклинивающего наполнителя (проппанта). Самой первой жидкостью разрыва стал бензин, загеленный добавочным напалмом Второй Мировой войны. ГРП, проведенный на газовом месторождении Хьюготон (Hugoton) в юго-западной части Канзаса был достаточно малообъемным и производился с использованием цементировочных агрегатов. Загеленный бензин приготовили в мешках автомобилей-цементовозов, а в скважину закачали менее 100 баррелей геля и меньше 50 мешков речного песка. Операция прошла успешно благодаря нарушению проницаемости в приствольной части пласта (скин-эффекту). В противном случае начало гидроразрыва – в том виде как мы его знаем – перенеслось бы на какой-то ограниченный период. Думаю, он рано или поздно был бы обнаружен вследствие принципиальной простоте вещей, осуществляемых с гидроразрывом.

Во время первого ГРП существовал почти непреодолимый страх установки на продуктивных пластах других вещей, кроме углеводородов. Из-за этого в течение многих лет среди жидкостей гидроразрыва преобладали жидкости на углеводородной основе. Многие операции проводились с использованием нефти местного происхождения, дизельного топлива или конденсата. Такие ГРП испытывали сильный дефицит вязкости для выноса и взвеси проппанта. Существовала очевидная потребность в достаточной вязкости, и первыми попытками ее добиться, кроме опасной смеси бензина и напалма, были в основном продукты мыльного типа, состоявшие из жирных кислот таллового масла, углеводородов и каустической соды. Такого рода продукт, хотя и испытывал относительно высокие потери давления на трение, применялся на скважинах в 70-е гг. Другим разработанным видом продукта была внешняя нефтяная эмульсия. В определенный момент из-за присущего риска и широкого спектра осложнений с системами на углеводородной основе отрасль стала переходить к использованию жидкостей на водной основе. Первичными системами такого плана в промышленном применении были вода и крахмал. Крахмал оказался слишком чувствительным и вскоре не выдержал конкуренции с внедрением гуаровой смолы для загущения воды. Более 50 лет жидкости на гуаровой основе и гуаровые производные использовались в качестве загустителей для создания линейных гелей и почти 40 лет в качестве основных компонентов для жидкостей, загущенных сшитыми полимерами. На **Рисунке 1** представлен типичный пример геля на гуаровой основе консистенции сиропа.

Другим ранним нововведением в области жидкостей для гидроразрыва стало использование в качестве понизителей трения полиакриламидные полимеры высокой молекулярной массы для возможности закачки с высокой производительностью воды и песка в относительно глубокозалегающие коллекторы через НКТ. Эти подавители турбулентности позволяли воздействовать на трещины в относительно глубоких коллекторах путем значительного снижения давления в трубах. Занимательен следующий факт: эти же

Since the advent of hydraulic fracturing in 1947 there has been a plethora of different and some times strange fluids used to create hydraulic fractures and transport and suspend propping agents. The very first fracturing fluid was gasoline gelled with World War II surplus Napalm. The fracturing treatment conducted in the Hugoton Gas Field in Southwestern Kansas was quite small and was conducted using cement pumping units. The gelled gasoline was prepared in the measuring tanks of the cement trucks and less than 100 barrels of gel and fewer than 50 sacks of river sand were pumped into the well. Thankfully, the well had considerable skin damage and the treatment was a success. Otherwise the inception of Hydraulic Fracturing as we know it would have been delayed for some finite period. I believe that it would have been eventually discovered due to the basic simplicity of what is accomplished with Hydraulic Fracturing.

At the time of the first fracturing treatment, there was an almost overwhelming fear of placing anything other than hydrocarbons on producing formations. Because of this the dominant fracturing fluids for many years were hydrocarbon based. Many treatments were conducted using lease crude, diesel or condensate. These treatments suffered greatly because of the lack of viscosity to carry and suspend proppants. There was an obvious need for viscosity and the first attempts at achieving viscosity other than the dangerous gasoline napalm mixture were essentially soap type products which consisted of Toll oil fatty acids, hydrocarbons and caustic soda. This type of product although suffering from relatively high friction pressure was used well into the 70's. Another product developed was an oil external emulsion. At some point because of all of the inherent danger and assorted problems with oil based systems the industry started moving toward the use of water based fluids. Initially early systems utilized were water and starch. Starch was found to be very shear sensitive and did not last long with the advent of the use of guar gum for thickening water. Guar based fluids and guar derivatives have been in use as viscosifiers for creation of linear gels for over 50 years and as base components for crosslinked fluids for nearly 40 years. **Illustration 1** is a typical guar base gel with the consistency of syrup.

Another early innovation that occurred in hydraulic fracturing fluids was the use of high molecular weight polyacrylamide polymers as friction reducers to allow high rate pumping of water and sand in relatively deep reservoirs down tubing. These turbulence suppression agents allowed fracture stimulation of relatively deep reservoirs by dramatically reducing the pumping pressure down tubulars. Interestingly enough these same materials that have been in existence for nearly 50 years are the mainstay for the Waterfrac Process which has taken over approximately 40% of all fracturing treatments in the domestic US.

The first introduction of crosslinked fracturing fluids was in 1968 with the pumping of a low pH guar based fluid crosslinked with Antimony. This fluid was pumped by Halliburton. Within a few months all of the major service companies were pumping crosslinked gels. The earliest systems from non Halliburton vendors were all crosslinked Borates with guar as the base. These early systems typically were 80 pounds per 1000 gallons of guar and created some extremely viscous fracturing fluids. **Illustration 2** is a picture depiction of a Borate Crosslinked gel. It should be noted that the dominate fracturing fluid used today for conventional formations with a

самые вещества, спустя почти полвека от их открытия, являются опорой для процесса гидравлического разрыва с применением загущённой воды в качестве жидкости разрыва, который занимает порядка 40% всех ГРП внутри США.

Первое применение жидкостей разрыва, загущенным сшитым полимером, отмечено в 1968 году, когда жидкость на гуаровой основе с низким показателем pH была прошита сурьмой. Закачка жидкости производилась компанией «Халлибертон». Спустя какие-то несколько месяцев все крупные сервисные компании начали качать сжитые гели. Более ранние системы от других поставщиков представляли собой сжитые бораты с гуаром в качестве основы. Такие ранние системы, как правило, включали гуар в концентрации 80 фунтов на 1000 галлонов и создаваемые чрезвычайно вязкие жидкости гидроразрыва. На **Рисунке 2** изображается боратовый сжитый гель. Следует отметить, что преобладающая в настоящее время жидкость разрыва для обычных пластов с забойной температурой меньше 300 градусов Фаренгейта есть модифицированная боратовая гуаровая система.

Параллельно с научными исследованиями по нефтяным загустителям от компании «Доу кемикал», фирмой «Даузел» в конце 60-х были внедрены значительно усовершенствованные нефте-гелевые системы. Непрерывный цикл противостояния систем на водной и нефтяной основе существует с самого начала проведения гидроразрывов и продолжает до сих пор, при этом нефтяные гели продвигаются за счет того, что от водоосновных систем предполагается повреждение. Разработанные «Даузел» (сейчас «Шлюмберже») нефтяные гели состояли из запущенных с основанием эфирами фосфата алюминия. Данные типы гелей по-прежнему преобладают в отрасли, несмотря на то, что одна сервисная компания - BJ Services («Би-Джей Сервисиз») – разработала и применяет запатентованную нефосфатную систему. Все такие системы вышли из военных исследований напалма. Одной из наиболее интересных жидкостей, разработанных

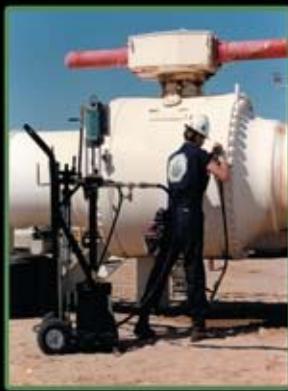
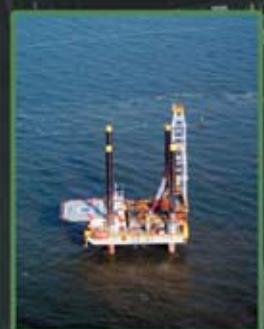


Рисунок 1
Illustration 1

Рисунок 2
Illustration 2

bottom hole temperature less than 300 degrees Fahrenheit is an updated Borate guar system.

Coinciding with research on oil gelling agents by the Dow chemical company much improved oil gel systems were introduced in the late 60's by Dowell. There had been an ongoing cycle of water based versus oil based systems since the inception of fracturing and this cycle still goes on today with oil gels being promoted due to assumed damage from water based systems. The oil gels developed by Dowell (now Schlumberger) consisted of aluminum phosphate esters triggered with a base. These gel types still dominate the industry although one service company, BJ Services, has developed and is using a proprietary non Phosphate system. All of these systems came from Military Napalm research. One of the more interesting fluids developed in the 60's was a fluid developed by Exxon Production Research with the name "Superfrac". This fluid was a combination of very thick oil heated to 180 degrees Fahrenheit. This heating was required so it would thin and become pumpable. This oil was then emulsified with a small amount of water and surfactant to disallow the acceptance of more water into the emulsion. This very viscous product which was the consistency of tar was then pumped down the well mixed with proppant. To be able to pump this mixture a mechanical device was installed on the wellhead whereby there was an external water ring created in the casing or tubulars. There were hundreds of these jobs pumped in the domestic US prior to the advent of Crosslinked gels. It is the opinion of



Oil Centre Research

International, L.L.C.

Liquid-O-Ring®

LiquidOil®
PROTEKT-O-COAT™
PLUS+®

Product Headquarters
for Industries
Around the Globe

Главный центр изделий для
предприятий нефтегазовой
отрасли во всем мире

Смазки для трубных замковых
соединений

Смазки для клапанов

Покрытия для труб

Средства для очистки и
удаления смазки

Смазки для канатной техники

Резьбовые смазки

Смазки для предотвращения
износа при хранении

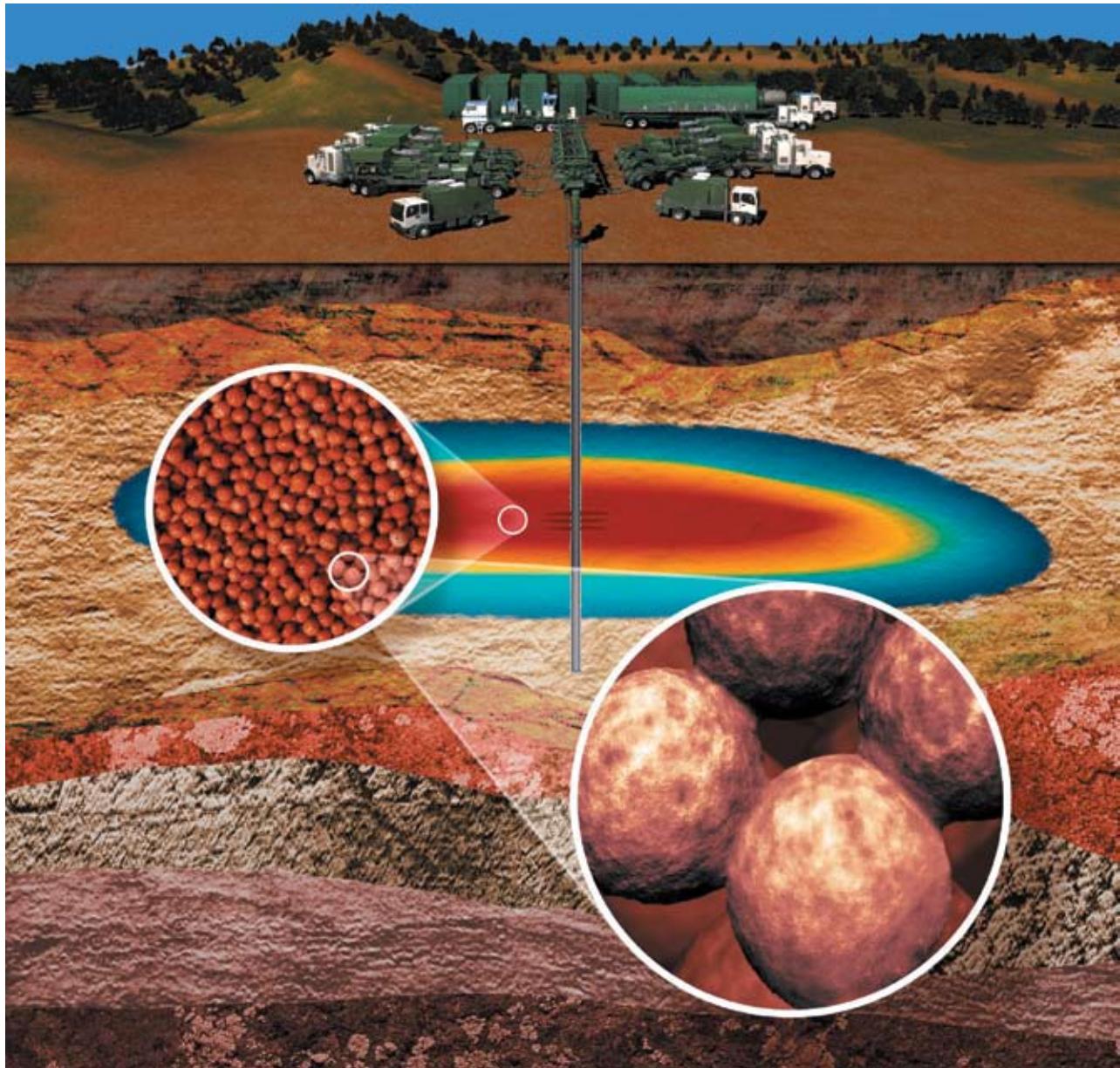
БИОРАЗЛАГАЕМЫЕ
СИНТЕТИЧЕСКИЕ
ИЗДЕЛИЯ

в 60-е годы, была разработанная исследовательским центром Эксон «Эксон Продакшн Рисерч» под фирменным названием «Суперфрак». Эта жидкость являлась сочетанием очень густой нефти, нагретой до 180 градусов Фаренгейта. Такой подогрев требовался для того, чтобы нефть стала подвижной и пригодной для закачки. Эту нефть затем эмульсировали с небольшим количеством воды и ПАВ, чтобы воспрепятствовать эмульсии принимать больше воды. Такой очень вязкий продукт, обладавший консистенцией гудрона, затем закачивали в скважину в смеси с проппантом. Чтобы дать возможность прокачивать данную смесь, на устье скважины устанавливали механическое приспособление, и таким образом в затрубном и трубном пространствах создавалась внешняя водяная завеса. До появления сшитых гелей внутри США были произведены сотни таких закачек. По мнению автора, именно такие недостатки «Суперфрака», как необходимость работы с очень горячим гудроноподобным веществом стали побудительной силой в разработке жидкостей, более удобных в обращении.

Среди событий 60-х была также разработка жидкости компанией «Доузл» под названием «Газ Фрак». Данная система представляла собой смесь CO₂, пропана и спирта. «Доузл» построила специальные напорные блендеры для перемешивания жидкости и анонсировала ее как эвтектическую смесь, т.е. жидкость, превращающуюся в парообразное состояние на основе отношения CO₂ к пропану. «Халлибертон» и другие сервисные компании последовали примеру со смесями загеленного спирта и CO₂, а также смесями ароматических углеводородов и CO₂. Хотя думалось, что такие системы будут последними в ряду неповреждающих жидкостей разрыва, они скоро приказали долго жить. Были предпринято не менее четырех-пяти попыток внедрения систем на основе спирта или спирта и CO₂, и все они мало или практически совсем не имели успеха в сравнении с традиционными системами жидкостей разрыва. Здесь также следует отметить, что одна базирующаяся в Канаде компания построила оборудование и открыла несколько станций в США, заявляя о наличии системы для ГРП с загущенным CO₂. Ограничением системы была мощность закачки – менее 40 000 фунтов проппанта, и возникали некоторые сомнения по поводу эффективности используемого гелеобразующего агента. Как и «Газ Фрак», эта система просуществовала очень недолго.

С конца 1960-х и в дальнейшем пошли мощные разработки в области жидкостей как на водной, так и нефтяной основе. В области линейных полимеров отрасль ввела несколько разных производных гуара. Многие годы преобладающим гелем основы в отрасли служило оксипропилпроизводное гуаровой смолы (ОГС). ОГС составляло почти 70 процентов всех водоосновных жидкостей – линейных и сшитых. Основной коммерческий аргумент в пользу ОГС заключался в том, что производное не только обладало улучшенными вязкостными и сшитыми свойствами, но и оставляло значительно меньше осадка на разрыве. После периода массового применения боратных гелей, в конце 60-х сервисные компании представили большое количество других жидкостей разрыва. Среди разных «сшивателей» использовали титан, алюминий, хром, цирконий, а также ранее упоминавшуюся сурму. С помощью окислительно-восстановительного механизма были созданы еще некоторые сшивающие системы, однако в конце концов отрасль перешла к использованию лигандов металлов типа триэтаноламина титана, лактата циркония и др. В конце 70-х преобладающей жидкостью стало ОГС, сшиваемое лигандами титана. С наступлением 80-х гг. отрасль перешла к применению лигандов циркония, сшивающих карбоксиметилгидропропил-производное гуаровой смолы. Благодаря своей анионной природе, КМГПГС стало подходящей жидкостью для коллекторов с забойными температурами от 300 F и выше. Как указывалось ранее, снова наблюдался рост спроса на значительно усовершенствованные боратовые гуаровые системы, доминирующие над сшитыми жидкостями, которые используются при температурах ниже 300° F. В области аэрированных и вспененных жидкостей разрыва и гуаровая смола и КМГПГС используются в линейных пенах. Преобладающей жидкостью, загущенной сшитым полимером среди содержащих CO₂ является жидкость с низким

the author that the negative parts of “Superfrac” such as handling the very hot tar like material were a driving force in the development of more user friendly fluids.


Also occurring in the late 60's there was a fluid developed by Dowell termed “Gas Frac.” This system was a mixture of CO₂, Propane, and Alcohol. Dowell built special pressurized blenders to mix the fluid and advertised it as a eutectic mixture, i.e. a fluid that would convert to a vapor based upon the ratio of CO₂ to Propane. Halliburton and other service companies followed suit with mixtures of gelled alcohol and CO₂ as well as mixtures of Aromatic hydrocarbons and CO₂. These systems although thought to be the ultimate in non-damaging fracturing fluids were short lived. There have been at least four or five more attempts at introducing alcohol or alcohol CO₂ based systems and all have found little or no success compared to conventional fracturing fluid systems. It should also be noted that one company located in Canada built special equipment and opened several stations in the US claiming to have a system for fracturing with viscosified CO₂. The system was limited to pumping less than 40,000 pounds of proppant and there was some question as to the effectiveness of the gelling agent used. Like the Gas Frac this system had a very short lifespan.

From the late 1960's onward there were tremendous developments in the area of both water base and oil base fracturing fluids. In the area of linear polymers the industry introduced several different derivatives of guar. For many years Hydroxypropylguar was the dominate base gel used in the industry. Nearly 70 percent of all water based fluids both linear and crosslinked were HPG. The major sales point for HPG was that the derivative, which was not only had better pound per pound viscosity and crosslink properties, also had considerably less residue on breakdown. After the initial high use of Borate gels in the late 60's the service companies introduced a large number of different fracturing fluids. The different crosslinkers used were Titanium, Aluminum, Chromium, Zirconium as well as the previously mentioned Antimony. Some of the crosslink systems that were created used a redox mechanism but eventually the industry moved to the use of ligands of metals such as Titanium Triethanolamine, Zirconium Lactate, etc. In the late 70's the dominate fluid was HPG crosslinked with Titanium Ligands. As we moved into the 80's the industry moved toward the use of Zirconium Ligands crosslinking Carboxymethylhydroxypropylguar. CMHPG, because of its anionic character, has become the fluid of choice for reservoirs with bottom hole temperatures of 300 degrees F and higher. As stated earlier there has been a resurgence of the use of much improved Borate guar systems which dominate the crosslink fluids used at temperatures below 300 Fahrenheit. In the area of energized and foamed fluids both Guar and CMHPG are used in linear foams. The dominate crosslinked fluid containing CO₂ is a low pH fluid using a Zirconium Ligand which function in the pH range of CO₂. There is a fairly widely used CO₂ system using guar crosslinked with a Titanium Ligand. This fluid which has been around for more than 20 years comprises most of the use of Titanium in the industry. Virtually all of the previously mentioned fluids are compatible with Nitrogen and there are very large numbers of both energized and foamed crosslinked systems using virtually all of the metals and base gels.

In fairly recent years the service companies have developed some new fluids which are being field tested around the world. Schlumberger has developed a series of non-polymeric “Surfactant gels” which create high viscosity fluids with no gel residue. These fluids have excellent properties but suffer from high cost. Halliburton has developed a fluid which consists of low molecular weight particles of derivatized guar crosslinked with a high concentration of Borate. This system is purported to have good cleanup properties and have some functionality in reuse. Like the surfactant gel this product suffers from high cost and secondarily due its low molecular weight has high pumping friction. Another development in fracturing fluid from Schlumberger is the addition of slowly soluble fibers to fracturing gels to assist in proppant transport. This system if being field tested and we are awaiting field results on its performance versus more conventional fluids.

■ Fracturing Fluid Additives

There have over the years been significant advances in various additives utilized in the fracturing gels. The wide array of low moderate and high

Достигая наилучших результатов

Обладая высококвалифицированным персоналом в области стимуляции скважин и повышения нефтеотдачи, Oilfield Technology Group компании Hexion является признанным лидером в области разработки и производства расклинивающего материала для гидроразрывов. Новая серия наших продуктов и услуг поднимает технологию гидроразрыва на новый уровень, помогая Вам достичь наилучших результатов. Hexion является Вашим надежным партнером, обеспечивающим поставку необходимых объемов высококачественного расклинивающего агента, являющегося компонентом для самых передовых технологий. Наша служба технической поддержки всегда готова помочь Вам. Дополнительная информация на сайте OilTG.com

Расклинивающие агенты для ГРП Контроль содержания песка

pH, использующая лиганд циркония, который функционирует в pH-диапазоне CO₂. Существует довольно распространенная система CO₂, использующая гуаровую смолу, сшитую лигандом титана. Эта жидкость занимает заметное положение более 20 лет и представляет собой большую часть использования титана в отрасли. Практически все ранее упомянутые жидкости совместимы с азотом, и есть очень много как аэрированных, так и вспененных сшитых систем, использующих почти все металлы и основные гели.

Сравнительно недавно сервисные компании разработали новые жидкости, проходящие полевые испытания по всему миру. «Шлюмберже» разработала серию неполимерных «поверхностно-активных гелей», создающих жидкости высокой вязкости без осадка геля. Данные жидкости обладают превосходными свойствами, но их недостаток – высокая стоимость. «Халлибертон» разработала жидкость, состоящую из низкомолекулярных частиц произведенной гуаровой смолы, сшитой высокой концентрацией бората. Эта система претендует на наличие хороших дренирующих свойств и частичные возможности повторного использования. Аналогично поверхностью-активному гелю, такой продукт отличает высокая стоимость, а второй недостаток – низкий молекулярный вес приводит к высокому трению при закачке. Другой разработкой в жидкости разрыва от «Шлюмберже» также является ввод медленно растворимых волокон в гели разрыва, чтобы способствовать переносу проппанта в трещину. Эта система проходит полевые испытания, и мы ждем результатов ее работы относительно обычных жидкостей.

■ Добавки в жидкости разрыва

За последние годы имели место значительные достижения в различных добавках, используемых в гелях разрыва. Массив разработанных реагентов - разжигателей с низкой, средней и высокой температурой дал нам возможность иметь идеальные проппантно-передающие жидкости, выдерживающие разумную длительность закачки при температурах от 70 и до 350 градусов Фаренгейта, плюс разложение жидкостей до вязкости воды. Кенным реагентам относятся окислители низко- и высокотемпературные, пероксиды, энзимы и капсулные версии всех этих продуктов. Практически все крупные сервисные компании имеют полный спектр реагентов для разрушения, охватывающий все диапазоны температур и pH. Кроме разжигателей, были разработки в области добавок – замедлителей сшивания и ускорителей сшивания, позволяющих точно регулировать время сшивания там, где это необходимо из-за требований извилистости или потери давления на трение.

■ Будущие потребности в НИОКР по жидкостям разрыва

Вторгаясь в более глубокозалегающие и горячие коллекторы, мы оказываемся у предела возможностей полимеров на основе гуаровой смолы или ее производных. На рынке отсутствуют жидкости, остающиеся стабильными при температурах выше 375 градусов F. Испытан ряд сшитых акриламидов, однако они страдают от неустойчивости их действия как следствия технологий, необходимых в производстве полимера основы. Это направление не исследовалось из-за отсутствия рынка сбыта, однако оно быстро становится обязательным, когда мы входим в продуктивные горизонты с забойными температурами выше 400°F.

Вследствие очень большого объема использованных жидкостей разрыва на водной основе требуется дополнительные усилия в области оптимизированных добавок – подавителей турбулентности и других химреагентов для оптимизации добычи из сильно трещиноватых обычных и необычных коллекторов.

Еще больше добавочных усилий требуется в области функциональности поверхностью-активных веществ в этих жидкостях. Существует серьезное свидетельство того, что ряд ПАВ не несут пользы, а в некоторых случаях вредны в случае использования в коллекторах с очень малой проницаемостью.

temperature breakers which have been developed has allowed us to be able to have perfect proppant transport fluids which last for reasonable pump times at temperatures as low as 70 degrees F to as high as 350 degrees Fahrenheit and also have the fluids degrade back to water viscosity. These breakers include low and high temperature oxidizers, peroxides, enzymes, and encapsulated versions of all these products. Virtually all of the major service companies have a complete spectrum of breakers which cover all temperature and pH ranges. In addition to breakers there have been developments in the area of crosslinker delay additives and crosslink accelerators which allow precise control of crosslink time where this is required due to tortuosity or friction pressure requirements.

■ Future needs in research and development on Fracturing Fluids

As we are moving into deeper and higher temperature reservoirs we are at the limit of guar based or guar derivative polymers. There are no commercially available fluids which will remain stable at temperatures above 375 degrees F. Some crosslinked acrylamides have been tested but suffer greatly from inconsistency in performance due to the methods required in manufacture of the base polymer. This area has not been pursued in the past due to lack of market but is fast becoming a necessity as we move into productive intervals with bottom hole temperatures greater than 400 Fahrenheit.

Because of the very large volume of the Waterfrac fluids used additional work is needed in the area of optimized turbulence suppression additives and other chemicals to optimize production from highly fractured conventional and unconventional reservoirs.

Additionally more work is need in the area of functionality of surfactants in these fluids. There is substantial evidence that some of the surfactants are not beneficial and in some cases are detrimental when used in extremely tight reservoirs.

A recent development has been the incorporation of a degrading agent for polyacrylamide friction reducers used in Waterfracs. These additives have been particularly beneficial in areas where oil production is achieved from source rock. Because of the very large treatments and concurrently the very large amount of acrylamide used there were prior to the advent of the breakers large amount of the viscous acrylamide produced out of wells disrupting production.

This has been a short summary of where we have been and where we are now with Hydraulic Fracturing Fluids. We have numerous tools with which we can effectively stimulate virtually any lithology up to 380 degrees F. With a small amount of effort we will have a stable fluid for use well past 400 degrees F. There is much work to do not only in high temperature areas but also in improving the systems used in the exploding work in very tight and unconventional reservoirs.

Недавней разработкой стало включение реагента разложения для понизителей трения полиакриламида, используемых в ГРП с использованием воды. Такие добавки оказались особенно полезными там, где добыча нефти осуществляется из материнской породы. Из-за очень больших объемов ГРП и одновременно очень большого количества используемого акриламида до появления разжигателей большая масса вырабатываемого из скважины вязкого акриламида подрывала добычу.

Это был краткий обзор прошлого и сегодняшнего положения в отношении жидкостей для гидроразрыва пласта. Имеется множество средств, с помощью которых можно моделировать практически любую литологию до 380 градусов F. Приложив немного труда, мы будем иметь стабильную жидкость для применений за пределами 400 градусов F достаточно приложить немного труда. При этом много работы необходимо провести не только в области высоких температур, но и над совершенствованием систем, используемых во взрывных работах на коллекторах с очень малой проницаемостью и необычных породах.

5-8 June 2007

Baku, Azerbaijan

CASPIAN OIL & GAS

**14th INTERNATIONAL
CASPIAN OIL & GAS
EXHIBITION AND CONFERENCE
INCORPORATING
REFINING AND
PETROCHEMICALS**

Official Support:

Ministry of Industry
and Energy of the
Republic of Azerbaijan

State Oil Company
of the Republic
of Azerbaijan

Organisers:

ITE
GROUP PLC

Iteca
Caspian

GIMA
International
Group of Messe

ITE
LLC MOSCOW

EUF

ITE (London) : Tel: +44 (0)20 7596 5016 Fax: + 44 (0)20 7596 5106; E-mail: oilgas@ite-exhibitions.com
Iteca Caspian (Baku) : Tel: +994 12 447 47 74 Fax: +994 12 447 89 98; E-mail: oilgas@iteca.az
Iteca (Almaty): Tel.: +7 (3272) 58 34 34; Fax: +7 (3272) 58 34 44; E-mail: olessya.makarenko@iteca.kz
ITE (Moscow) : Tel: +7 495 9357350; Fax: +7 495 9357351; e-mail: oil-gas@ite-expo.ru
GIMA (Hamburg): Tel: +49 (0) 40 235 24 201 ; Fax: +49 (0) 40 235 24 410; E-mail: freckmann@gima.de
EUF (Istanbul): Tel: +90 212 291 83 10 ; Fax: + 90 212 240 43 81; E-mail: ilker@ite-turkey.com

www.ite-exhibitions.com/og • www.caspianoilgas.ru