

Интервью ROGTEC:

Михаил В. Вилков,

главный инженер РБЕ «Россия»

Группы ERIELL

The ROGTEC Interview:

Mikhail Vilkov,

Deputy General Director - Chief Engineer
of RBU Russia, ERIELL Group

Год назад Группа ERIELL достигла рекордных показателей на Уренгойском НГКМ, пробурив первую в ЯНАО скважину с горизонтальным окончанием 1 км на ачимовские отложения. За это время ERIELL неоднократно обновляла собственный рекорд как по проходке, так и по срокам выполнения работ. Очередным успехом Группы стало завершение в июне 2014 бурения двух скважин за 76 и 70 суток с опережением графика на 24 и 30 суток соответственно. Впервые в ачимовских отложениях были применены компоновки заканчивания для многостадийного гидроразрыва пласта и проведены 3-х стадийные ГРП в каждой скважине.

На вопросы редакции ответил заместитель генерального директора – главный инженер РБЕ «Россия» Группы ERIELL М. В. Вилков.

Михаил Викторович, бурение скважины за 76 суток стало, своего рода, толчком для достижения последующих временных рекордов Группы. Какие именно услуги были предоставлены за эти 76 дней, сколько времени ушло непосредственно на бурение скважины?

В своей работе Группа ERIELL активно применяет программу опережающего бурения, которая позволяет сократить сроки реализации проектов и, соответственно, оптимизировать затраты заказчиков. Суть данной программы заключается в том, что первая часть скважины бурится с легкого станка, такого как, например, ZJ20, а далее уже мобилизуется тяжелая буровая установка. Секция 340-мм кондуктора данной скважины была пробурена методом опережающего бурения еще в

A year ago, ERIELL Group broke a number of records in drilling the first 1km horizontal well at the the Urengoyskoye oil and gas condensate field in the Yamalo-Nenets Autonomous District. The well was drilled in the Achim deposits. During drilling, we broke our own records for both drilling time and performance. Our next success was the completion of two wells at the end of June. They were scheduled for completion within 76 days and 70 days, but were 24 days and 30 days ahead of time, respectively. And for the first time, completion assemblies for multistage hydraulic fracturing were used, and 3-stage hydraulic fracturing was performed in the Achim deposits.

M. Vilkov, Deputy General Director – Chief Engineer of RBU Russia, ERIELL Group.

Mikhail, drilling a well in 76 days became the ambitious time goal for the company for well delivery. What services were provided in these 76 days, and how much time did it take to drill the well?

ERIELL Group actively uses the early drilling program system, which allows us to reduce the time we take to drill wells, and therefore reduces the costs for our clients. The essence of this program is that the first part of the well is drilled with a light-duty drill rig such as the ZJ20, and the heavy-duty drilling rig is mobilized afterwards.

In 2013, the 340mm section of the surface casing for this well was drilled using our “early drilling method”. The well was then suspended. After resumption of the work, the net drilling time for three other sections (245mm service casing, 178mm production casing, and 114mm liner) was 334.5 hours, which makes it 10.6% of their total construction time.

2013 г. Далее скважина была законсервирована. После того как работы возобновились, чистое время бурения трех остальных секций (245-мм технической колонны, 178-мм эксплуатационной колонны и 114-мм хвостовика) заняло 334,5 часа, что составляет 10,6% от общего времени их строительства.

При бурении - непосредственно в процессе углубления скважины - были предоставлены такие услуги, как инклинометрия, гамма-каротаж, резистивиметр, азимутальный и нейтронно-плотностной каротаж, акустический каротаж, кавернометрия, велось отслеживание забойного давления и эквивалентной циркуляционной плотности в режиме онлайн.

Какие методы и технические приемы вы использовали для сокращения цикла бурения?

Для обеспечения максимально возможной скорости проходки, создания устойчивого и стабильного ствола скважины мы, как обычно, использовали роторно-управляемые системы (РУС), кроме того РУС обеспечивает более точную проводку скважины.

Использование азимутального и нейтронно-плотностного каротажа позволяет определять фильтрационно-ёмкостные свойства горных пород непосредственно при бурении.

Применение плотностного каверномера обусловлено необходимостью определения интервалов установки пакеров и площадок пакерования для проведения МГРП, а приборы акустического и нейтронно-плотностного каротажа позволили рассчитать и спрогнозировать устойчивость стенок скважины в режиме реального времени на основании расчетов упругих и прочностных свойств разбуриваемых пород.

Было ли у вас в планах пробурить скважину с 25% опережением графика?

Жесткого планирования сокращения времени на 25% изначально не было, но мы всегда стараемся работать с полной отдачей, поэтому, конечно, все делалось для того, чтобы результаты были высокими. Одним из приоритетов ERIELL является эффективное, качественное и быстрое бурение (что в конечном итоге позволяет повысить экономическую эффективность любого проекта), в связи с чем Группа всегда заинтересована в опережении сроков строительства.

Данная скважина стала важной ступенью на пути к достижению следующего этапа - в конце июля

Services such as directional surveying, gamma-ray logging, continuous mud resistivity, bearing and neutron density logging, caliper logging, and acoustic logging, were also provided during drilling. During well construction, bottom hole pressure and equivalent circulating densities were monitored remotely and online.

What methods and techniques did you utilize to reduce drilling time?

As usual, we used rotary steerable systems (RSS) to maximize drilling rates and to ensure a steady and stable well bore. RSS also allows us to more precisely target the pay zone. Use of bearing and neutron density logging allows us to determine the permeability and porosity of the rocks while drilling.

The application of a caliper logging tool is necessary to determine the intervals for setting the packers and packer pads for multistage hydraulic fracturing; the acoustic and neutron density logging tools enable us to calculate and forecast the stability of the wellbore in the real-time, based on the calculations and strength of the formations.

Did you plan to drill the well 25% earlier than anticipated?

Initially, there was no fixed plan for a 25% reduction in drilling time, but we of course always try to do our best and achieve the most efficient drilling times for our clients. Effective, high-quality, and fast drilling, that eventually enables the operator to increase the efficiency and profitability of any project, is one of the ERIELL's priorities. On this basis, we have always been interested in keeping the construction ahead of the schedule.

This well became an important step towards our next milestone – at the end of July, we completed the next well at the ARKTIKGАЗ project with a 1,049m horizontal section and total drilling time of 46 days instead of the planned 90 for a 5,058m section. This is almost twice as fast as the schedule.

What techniques did you utilized to ensure that you exceeded your time targets?

- » Oil-based mud – OBM.
- » Rotary steerable systems – RSS.
- » Avoiding performance of geophysical studies upon completion of the drilling sections
- » Incorporating all of the necessary geophysical techniques in the bottomhole assembly while drilling – by doing this we achieved effective data acquisition from our telemetry tools.

ERIELL завершила бурение очередной скважины по проекту «АРКТИКГАЗ» с горизонтальным окончанием 1 049 м и общей проходкой 5 058 м за 46 суток вместо запланированных 90. Это почти в два раза быстрее предусмотренного графиком срока.

Какие технологии при бурении вы использовали для успешного достижения результата в более сжатые сроки?

- » Буровой раствор на нефтяной основе – РУО.
- » Роторно-управляемая система - РУС.
- » Для отмены проведения геофизических исследований по окончании бурения секций – включение всех необходимых геофизических методов в КНБК при бурении, при этом эффективность получения данных онлайн достигалась максимально высокой скоростью передачи данных от прибора телеметрии.

С какими проблемами вы столкнулись в процессе бурения, как они были преодолены?

При бурении в секции 222.3 мм (под 178-мм эксплуатационную колонну) было падение интенсивности набора параметров кривизны, обусловленное естественными геологическими причинами. Данная проблема была решена за счет снижения МСП, увеличения процента направленного бурения.

В процессе бурения секции 152.4 мм (под 114-мм хвостовик) столкнулись с высокой неравномерностью вращения долота на твердых пропластках и участках бурения перемычки между продуктивными пластами Ач3 и Ач4. Данная проблема была решена за счет изменения параметров бурения – количества оборотов ВСП, нагрузки, периодических отрывов от забоя.

Какие новые знания были приобретены в процессе работы над данным проектом, которые можно было бы использовать в будущем?

Использование данных с прибора акустического каротажа для бурения в данном азимуте может быть использовано в дальнейшем для уточнения схемы разработки месторождения.

Какова была степень вашей вовлеченности к процессу мультистадийного ГРП?

Подготовительные работы к проведению МГРП включают в себя спуск компоновки и активация всех элементов. Данные работы были успешно нами проведены.

What problems did you encounter during your drilling ops and how were they overcome?

While drilling 222.3mm section (for 178mm production casing), there was a drop in the drift angle due to natural geological reasons. We resolved this problem by reducing inter well pumping and increasing the directional drilling rate. While drilling a 152.4mm section (for 114mm liner), we faced uneven bit rotation in hard interlayers in drilling sections between pay zones Ach3 and Ach4. This problem was resolved by changing the drilling parameters – top drive speed, load, and periodic liftoffs from the bottom.

What new knowledge did you acquire on this project that could be useful in the future?

Data acquired from the acoustic logging tool can be used to further correct the field development plan.

What was the extent of your involvement in multistage hydraulic fracturing process?

Preliminary operations for multistage hydraulic fracturing include assembly run-in and the activation of all elements. We successfully performed all of these operations.

What technical difficulties arose while drilling the horizontal section?

- » Uneven of rotation (120%) while drilling hard interlayers and webs between the pay zones Ach3 and Ach4.
- » Increased gas production while drilling and consequently a necessity to limit the inter-well pumping and to perform additional washovers prior to upbuilding.

Were you remunerated for early completion of the project?

Remuneration of the drilling crew and engineers involved in the project was based upon the results of their work under the bonus regulations of ERIELL Group's RBU Russia.

How was HSE monitored during accelerated drilling process?

Our HSE Engineer was always present at the drilling site. Unscheduled checks of the functionality of the BOP and of the readiness to act of the drilling team members in the case of an emergency were also held. Gas shows and casing pressure were always closely monitored during the drilling of section 152.4 mm with intermediate washovers and a limitation of inter-well pumping when required.

Какие технические трудности возникли при бурении горизонтального участка?

- » Неравномерности вращения (120 %) во время бурения твердых пропластков и перемычек между продуктивными пластами Ач3 и Ач4.
- » Повышенные газопоказания при бурении и, как следствие, необходимость ограничения МСП и дополнительные промывки перед наращиваниями.

Вознаградили ли вас за досрочную сдачу проекта?

По результатам работы буровая бригада и ИТР, участвовавшие в проекте, были вознаграждены согласно установленному положению о премировании РБЕ «Россия» Группы ERIELL.

Как шел процесс контроля за ПБ, ОТ и ООС при ускоренном процессе бурения?

Непосредственно на буровой постоянно находится полевой инженер ПБ, ОТ и ООС Группы ERIELL. При производстве работ внепланово проверялась работоспособность ПВО и готовность членов буровых вахт к действиям при ГНВП. Внимательно отслеживались газопоказания и затрубное давление во время бурения секции 152.4 мм с промежуточными промывками и ограничением МСП в случае необходимости.

Возникали ли у вас проблемы с производительностью бурового долота при реализации данного проекта?

Исходя из промыслового опыта уже пробуренных субгоризонтальных хвостовиков на ачимовские отложения, был проведен подбор долота с требуемыми опциями - MDi513LUBPX. Основная принципиальная задача решена - это снижение неравномерностей вращения при бурении.

Как показали себя роторные управляемые системы в процессе бурения?

РУС продемонстрировал уверенную работу в ходе бурения данной скважины. Для снижения неравномерностей вращения и ускорения бурения секции 152.4 мм и 222.3 мм рекомендуется использование РУС с забойным двигателем (Vortex).

Did you have problems with drill bit performance during this project?

Selection of a bit with the required specifications – MDi513LUBPX – was based on the field experience in the subhorizontal liners already drilled in the Achim deposits. The principal problem was the need to reduce the uneven rotation during drilling – and as explained above this was resolved.

How did rotary steerable systems perform during drilling?

The RSSs operated steadily during the drilling of this well. Use of RSS with a downhole motor (Vortex) is recommended to reduce the unevenness of rotation and acceleration in drilling of 152.4 mm and 222.3 mm sections.